
Lecture 10 examples

December 9, 2019

1 Dynamic memory allocation

We know how to work with static arrays, i.e. such that their size is known at the time of compila-
tion. Now we need a method to deal with situations where size is unknown at compilation, and
is going to be fixed at runtime.

Dynamic memory allocation can be done with malloc() function, which is declared in stdlib.h.
Memory is deallocated with free().

• #include <stdlib.h>
• void * malloc(unsigned int size)

– allocates a memory block of size bytes
– returns an address of that memory block
– it is up to the programmer to free the memory

* free()

Note that void * malloc() returns an addres of the memory block that have been allocated as a
pointer to void (i.e. void *). The programmer needs to cast the returned pointer to an appropriate
data type: int * for an array of int, char * for an array of char, and so on.

1.1 1D arrays

We will start with 1D arrays. Those wirk very much the same as the static counterpart. The
only difference is in array declaration (memory allocation) and the need to destroy it at the end.
Everything else works the same.

The first program allocates a block of 24 bytes and interprets it as an array of characters (how
many?)

In []: # include <stdio.h>
include <stdlib.h>

int main(){
char *tab = (char *)malloc(24); // allocate memory

for(int i=0; i<24; ++i) // fill the array with characters
tab[i] = 50 + i;

for(int i=0; i<24; ++i) // print the content as characters

1

printf("%c ", tab[i]);

free(tab); // Deallocate memory
}

Providing the number of bytes to allocate is very inconvinient. The size of variables might
vary in between architectures or simply we might not know the size of the data type1. The easy
solution is to use the sizeof() function to estimate the size of a data type.

1 Up to now we have been using only simple data types (int, double ...) with well defined size.
The composite data type are constructed from simple as well as other composites types and their
size might be difficult to estimate. Also composites can be modified during program development
changing their size.

This program reads an integer n from standard input and allocates an array of n integers.

In []: # include <stdio.h>
include <stdlib.h>

int main(){
int n; // Variable to store size
//scanf("%d", &n); // Read size from keyboard
n = 10;

int *tab = (int *)malloc(n*sizeof(int)); // allocate memory for an array of int

for(int i=0; i<n; ++i) // Fill array with numbers
tab[i] = i;

for(int i=0; i<n; ++i) // Print
printf("%d ", tab[i]);

free(tab); // Deallocate memory
}

In specific problems size of the actual data array can result from different operations. It could
be read from keyboard, file, or other input (e.g. a message over network in client-server configu-
ration).

In this example we will read data from a file data1.dat. The file contains data defining position
(x and y coordinates) of n points. The structure of the file is as follows:

n <- number of points
x1 y1 <- coordinates of the first point x2 y2
.. ..
xn yn <- coordinates of the last point

In []: # include <stdio.h>
include <stdlib.h>

int main(){
FILE *f = fopen("data1.dat", "r");

2

int n;
fscanf(f, "%d", &n);
double *x = (double *)malloc(n * sizeof(double));
double *y = (double *)malloc(n * sizeof(double));

for(int i=0; i<n; ++i)
{

fscanf(f, "%lf %lf", &x[i], &y[i]);
}

for(int i=0; i<n; ++i)
{

printf("%lf %lf\n", x[i], y[i]);
}

free(x);
free(y);
fclose(f);

}

1.1.1 Functions and 1D arrays

1D dynamic arrays work the same as static ones as arguments to functions
In this example we will develop two functions. The first one for filling an array with data and

the second for printing the content of an array.

In [1]: # include <stdio.h>
include <stdlib.h>
include <time.h>

// Fills an array of n integers with random values
// ranging from 0 to 99
void fill(int tab[], int n) // Note the argument list
{// an array, its size

for(int i=0; i<n; ++i)
{

tab[i] = rand()%6;
}

}
// Prints an array of n ints
void print(int *tab, int n)
{// an array, the size

for(int i=0; i<n; ++i)
{

printf("%d ", tab[i]);
}

}

3

int main(){
srand(time(NULL)); // initialize the random sequence
int n;
//scanf("%d", &n); // read the size from keyboard
n = 20;

int *tab = (int *)malloc(n*sizeof(int)); // allocate memory

fill(tab, n); // call fill() function
print(tab, n);// call print() function

free(tab); // dealloacate
}

13 17 80 3 55 67 98 8 29 56 46 91 87 43 91 80 92 8 53 29

In []: # include <stdio.h>
include <stdlib.h>
include <time.h>

int main()
{

int **p = (int **)malloc(2 * sizeof(int*));
p[0] = (int*)malloc(5 * sizeof(int));
p[1] = (int*)malloc(5 * sizeof(int));

// use with p[i][j];

free(p);
free(p[0]);
free(p[1]);

}

1.2 2D arrays

Contrary to 1D dynamic arrays, dynamically allocated 2D arrays (or any higher dimensional con-
structs) differ from their static counterparts. The source of the differences lies in the way data is
stored in memory. In the case of static arrays the memory is guaranteed to be continously occupied.
In the dynamic case memory distribution is up to the programmer.

The main feature we need from a 2D array is the ability to acces data with two indices, i.e.: A[
i][j]. Since a single square bracket operator was infact an indirection operator * applied to an
array (pointer) the double square brackets would correspond to a double indirection operator **,
or in other words the 2D array would be equivalent to a pointer to a pointer (a double pointer)
(i.e. int ** A).

tab[i] -> *(tab + i)
tab[i][j] -> *(tab[i] + j) -> *(*(tab + j) + j)

We start with a 1D array of 6 integers, that we would like to interpret as a 2x3 2D array.

4

In []: # include <stdio.h>
include <stdlib.h>

int main(){
int n = 6; // we fix the number of elements to 6

int *tab = (int *)malloc(n*sizeof(int)); // allocate

tab[0] = 11; tab[1] = 12; tab[2] = 13; // first row to be
tab[3] = 21; tab[4] = 22; tab[5] = 23; // second row to be

printf("%d %d %d\n", tab[0], tab[1], tab[2]);
printf("%d %d %d\n", tab[3], tab[4], tab[5]);

free(tab);
}

This is not a 2D array, i.e. we can not acces elements as tab[1][2] to get 23. We modify the
program such that rows of our intended 2D structure are referenced by different pointers.

In []: # include <stdio.h>
include <stdlib.h>

int main(){
int n = 6;

int *tab = (int *)malloc(n*sizeof(int));

tab[0] = 11; tab[1] = 12; tab[2] = 13;
tab[3] = 21; tab[4] = 22; tab[5] = 23;

int *p0 = &tab[0]; // First row
int *p1 = &tab[3]; // Second row

printf("%d %d %d\n", p0[0], p0[1], p0[2]);
printf("%d %d %d\n", p1[0], p1[1], p1[2]);

free(tab);
}

So we can acces data stored in tab as two separate arrays, a bit better but still not a 2D array.
We modify the program further and replace pointers p0 and p1 with a static 1D arrays of pointers
to integers (int *).

In []: # include <stdio.h>
include <stdlib.h>

int main(){
int n = 6;

5

int *tab = (int *)malloc(n*sizeof(int));

tab[0] = 11; tab[1] = 12; tab[2] = 13;
tab[3] = 21; tab[4] = 22; tab[5] = 23;

int *A[2]; // Static 1D array of int *
A[0] = &tab[0]; // First row
A[1] = &tab[3]; // Second row

//We can now access the elements with [][] !!
printf("%d ", A[0][0]); printf("%d ", A[0][1]); printf("%d\n", A[0][2]);
printf("%d ", A[1][0]); printf("%d ", A[1][1]); printf("%d\n", A[1][2]);

free(tab);
}

Now we can access the data with double square brackets, in other words data can be inter-
preted as a 2D array. A is a 1D array, so A[i] returns the i’th element of A. The type stored in A is
int * so A[i] is a pointer to which we can apply square brackets. Finally A[i][j] returns an integer.

Our final modification is to make A a dynamically allocates array, note that A stores int *, so
the type we need for dynamic allocation is int **.

In []: # include <stdio.h>
include <stdlib.h>

int main(){
int n = 6;

int *tab = (int *)malloc(n*sizeof(int));

tab[0] = 11; tab[1] = 12; tab[2] = 13;
tab[3] = 21; tab[4] = 22; tab[5] = 23;

int **A = (int **)malloc(2 * sizeof(int *)); // Dynamic allocation of A
A[0] = &tab[0]; // Assign address of the first row
A[1] = &tab[3]; // Address of the second row

//We can now access the elements with [][] !!
printf("%d ", A[0][0]); printf("%d ", A[0][1]); printf("%d\n", A[0][2]);
printf("%d ", A[1][0]); printf("%d ", A[1][1]); printf("%d\n", A[1][2]);

free(A); // Deallocate A
free(tab);// Deallocate tab

}

Working with dynamic 2D arrays differs from what we did with static 2D arrays. The main
difference is in the way of passing arrays to functions. In the case of static 2D arrays we did it

6

with a type, variable name and two square brackets, the number of columns needed to be passed
as well. E.g.:
int A[][M] for a 2D array of integers with M (known at compilation) collumns. A dynamic array
will not work with such a function (can you explain why?), instead we need to pass the pointer-
to-pointer variable, i.e. int **.

In this example we will develop a function that prints values storred in a n x m 2D array. The
array is created based on values stored in a file data2.dat. The structure of the file is as follows:

n m <- number of rows, collumns
a11 a12 ... a1m <- first row
a21 a22 ... a2m <- second row
... ...
an1 an2 ... anm <- the last row

In []: # include <stdio.h>
include <stdlib.h>

// Prints the content of a 2D array od integers
// n - number of rows
// m - number of collumns
void print(int **A, int n, int m)
{

printf("\nThe content of a 2D array:\n");
for(int i=0; i<n; ++i) // all rows
{

printf("["); // a nice bracket
for(int j=0; j<m; ++j) // all collumns
{

printf("%d, ", A[i][j]);
}
printf("\b\b]\n"); // two backspaces and a nice bracket

}
}

int main(){
FILE *f = fopen("data2.dat", "r"); // Open a file
int n, m; // rows and collumns
fscanf(f, "%d", &n); // read number of rows
fscanf(f, "%d", &m); // read number of collumns
printf("The array is %d x %d\n\n", n, m);

int **A = (int **)malloc(n * sizeof(int *)); // Allocate A
int *p = (int *)malloc(n * m * sizeof(int)); // Allocate space for data
for(int i=0; i<n; ++i) // Assign addreses to elements of A
{

// p is the begining of the memory segment,
// m is the number of elelents in a single row
A[i] = p + i * m;
//Print addresses of rows

7

printf("Address of %d row is %p \n", i, A[i]);
}

for(int i=0; i<n; ++i) // Read data from a file
{

for(int j=0; j<m; ++j)
{

fscanf(f, "%d", &A[i][j]);
}

}

print(A, n, m); // Use function print

// Deallocate memory and close the file
free(p);
free(A);
fclose(f);

}

The array in the example above is 3x2, the number of elements in a row is 2, the elements are
integers so spacing betwin rows is 8 bytes. Verify the addresses printed above. Also have a look
at line 34 where adreses are assigned to elements of A.

In []: # include <stdio.h>
include <stdlib.h>

define MAX_SIZE 10

void fill(int A[][MAX_SIZE], int r, int c)
{

for(int i=0; i<r; ++i)
{

for(int j=0; j<c; ++j)
{

A[i][j] = i + j + 1;
}

}
}
void print(int A[][MAX_SIZE], int r, int c)
{

for(int i=0; i<r; ++i)
{

for(int j=0; j<c; ++j)
{

printf("%d ", A[i][j]);
}
printf("\n");

}

8

}

void copydiag(int A[][MAX_SIZE], int r, int c, int d[])
{

for(int i=0; i<r; ++i)
{

d[i] = A[i][i];
}

}
void copyrow(int A[][MAX_SIZE], int r, int ri, int d[])
{

for(int i=0; i<r; ++i)
{

d[i] = A[ri][i];
}

}
void insertrow(int A[][MAX_SIZE], int r, int ri, int d[])
{

for(int i=0; i<r; ++i)
{

A[ri][i] = d[i];
}

}

int main(){
int tab[MAX_SIZE][MAX_SIZE];
fill(tab, 3, 3);
print(tab, 3, 3);

printf("---\n");

//int d[MAX_SIZE];
int *d = (int *)malloc(3 * sizeof(int));
copyrow(tab, 3, 1, d);
for(int i=0; i<3; ++i)

printf("%d ", d[i]);

free(d);
}

aaa

9

	Dynamic memory allocation
	1D arrays
	Functions and 1D arrays

	2D arrays

